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The discussion begins with the classification of eigenvalue problems arising from
conservative and non-conservative structural systems. The conservative type includes
undamped structural eigenvalue problems and undamped gyroscopic eigenvalue problems.
The non-conservative type includes damped structural eigenvalue problems, damped
gyroscopic eigenvalue problems and constrainedly damped eigenvalue problems. The
methods for solving large scale unsymmetric eigenvalue problems are briefly reviewed. The
advantages and properties of Arnoldi’s method have also been discussed. Arnoldi’s
reduction method has been generalized and the partial solution of large scale
unsymmetric-definite eigenvalue problems in structural dynamics is presented in detail. A
very simple reduction algorithm is obtained by simplifying the proposed method for
undamped gyroscopic eigenvalue problems. To make the proposed reduction method
feasible for engineering problems, a restart technique is introduced to work with Arnoldi’s
reduction method for checking and computing missing eigenvalues. Numerical examples
are also presented to demonstrate the effectiveness of the proposed reduction method.

7 1997 Academic Press Limited

1. INTRODUCTION

An eigenvalue problem for modern structural dynamic analysis can be generally expressed
as follows [1] (a list of nomenclature is given in Appendix B):

l2Mx+ l(G+C)x+(K+D)x=0. (1)

If the gyroscopic, damping and constraint damping matrices G, C and D are not present,
this eigenvalue problem simplifies to an undamped structural eigenvalue problem:

l2Mx+Kx=0. (2)

Equation (2) is frequently encountered in engineering analysis. However, a practical
structure is always damped. If the damping is light, the system is usually assumed to have
proportional damping, so that the problem still can be solved as easily as eigenvalue
problem (2). In modern structures, because of the application of new energy dissipative
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materials and concentrated damping devices, engineers will face the following quadratic
eigenvalue problem:

l2Mx+ lCx+Kx=0. (3)

Furthermore, in the dynamic analysis of rotating structures, such as helicopter blades and
rotating stabilized satellites, where Coriolis forces may have important effects on dynamic
characteristics of the whole system, the following undamped and damped gyroscopic
eigenvalue problems, respectively, need to be solved:

l2Mx+ lGx+Kx=0, l2Mx+ l(G+C)x+Kx=0. (4, 5)

If the system is forced by the follower forces, the linearized equation about its equilibrium
will generally result in a symmetric stiffness matrix K and a skew-symmetric constraint
damping matrix D. In such cases, the eigenvalue problem will take the form of equation
(1). The constraint damping may also appear in the governing equation in other cases such
as the stability of plasma [2–6].

With finite element modelling (FEM), the size of the eigenvalue problems (1)–(5) is
usually very large, but the system matrices M, G, C, K and D are usually sparsely
populated. For most engineering eigenvalue problems, one is interested only in the lower
eigenvalues and corresponding modes which need to be investigated. Hence a method for
large scale eigenvalue problems should have the capability reliably to find those lower
eigenvalues while fully utilizing the sparsity of the system matrices. Reduction methods,
such as the Lanczos method and the subspace iteration method, are appropriate for such
uses.

The generalized symmetric eigenvalue problem (2) can be efficiently solved by the
subspace iteration method [7] and the symmetric Lanczos method [8–10]. The undamped
gyroscopic eigenvalue problem has been under study for many years. Currently,
Meirovitch’s method [11], Bauchau’s Lanczos method [12] and Gupta’s block Lanczos
method [13] are available. Since Coriolis forces do no work in any virtual displacement,
the gyroscopic eigenvalue problem can be classified as of the same type as the undamped
structural eigenvalue problem described in equation (2), belonging to the conservative type.
This classification is assured by the fact that both two types of eigenvalue problems take
on a skew-symmetric form in the state space. The symmetry of the gyroscopic eigenvalue
problem (4) and the undamped structural eigenvalue problem (2) are derived from the
conservative nature of structural systems. Rewriting equation (1) in the state space, one
has

l$−(G+C)
M

−M
0 %6 x

lx7=$K+D
0

0
M%6 x

lx7. (6)

In terms of the quantities

A=$−(G+C)
M

−M
0 %, B=$K+D

0
0
M%, y=$ x

lx%,

equation (6) becomes

lAy=By. (7)

The presence of the damping matrix C and the constraint damping matrix D in equation
(6) has destroyed the symmetry of the system matrices. From the physical point of view,
the damping matrix C and the circulatory matrix D are due to the non-conservation of
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energy in the system. In such cases, the eigenvalue problem (1) becomes materially
unsymmetric.

The difference between conservative and non-conservative eigenvalue problems may
result in very different phenomena in the procedure of finding solutions. For example, if
the two-sided Lanczos method [14] is applied to the unsymmetric eigenvalue problems (3)
and (5), there will be a possibility of serious breakdown [14], as in the methods proposed
in references [15–17]. However, this phenomenon vanishes when the two-sided Lanczos
method is applied to the conservative type of eigenvalue problems (2) and (4), as in
Bauchau’s gyroscopic Lanczos method [12] and Gupta’s block gyroscopic Lanczos method
[13]. If the two-sided Lanczos method is applied to a non-conservative or unsymmetric
eigenvalue problem, complex computation cannot be avoided; while for the conservative
eigenvalue problem, complex computation is unnecessary.

Arnoldi’s method [18] was developed shortly after Lanczos’ method [8]. With Arnoldi’s
method, there is no possibility of serious breakdown for both the symmetric and
unsymmetric matrices, and the algorithm is conducted entirely in the real domain for any
real matrices. However, Arnoldi’s method is less well known than Lanczos’ method
because, for a complete reduction of a matrix to its upper Hessenberg form by Arnoldi’s
method, the computational cost is higher than by Housholder’s method, due to additional
re-orthogonalization requirements [14]. For modern large scale sparse eigenvalue
problems, if Arnoldi’s method is used to determine a few end eigenvalues, it may be very
efficient. In recent years, interest has been shown by mathematicians [19–21].

The main purpose of this paper is to develop a reduction technique based on Arnoldi’s
method for the eigensolution of large scale unsymmetric eigenvalue problems in structural
dynamics. The method should be capable of finding all the lower eigenvalues reliably
without missing any. Meanwhile, it should be robust, and it also should avoid complex
computation and take advantage of the sparsity of system matrices.

2. AN ARNOLDI ALGORITHM FOR UNSYMMETRIC EIGENVALUE PROBLEMS
IN STRUCTURAL DYNAMICS

The basic Arnoldi process for a standard matrix can be found in reference [18]. An
Arnoldi reduction for the generalized eigenvalue problem (7) is defined in Algorithm 1
below. There is no loss of generality in assuming that matrix B is non-singular. A very
general shift technique can be found from reference [22] for transforming the quadratic
eigenvalue problem to that of a single matrix in case matrix B is singular. The following
transformation is adopted from reference [22]: m=(u+ l)/(u− l). By choosing a positive
number for the parameter m, the transformation has very favorable properties for studying
the stability of the system according to reference [22]. As an alternative, the following
simple shift technique can also be accepted. If B is singular, a shift l0 can be made in
equation (1) by letting l= m+ l0; then equation (1) is transformed to

m2Mx+ m(G+C	 )x+(K	 +D	 )x=0, (1a)

where C	 =C+2l0M=C	 T, K	 =K+ l0C+ l2
0M=K	 T and D	 =D+ l0G=−D	 T. Using

the finite element method to establish the system governing equation, all system matrices
generally have the same sparsity structure. Carrying out the shift with equation (1) instead
of equation (7) not only retains the sparsity of the system matrices but also the structure
of matrices A and B.

Algorithm 1: generalized Arnoldi reduction process for unsymmetric eigenvalue
problem (7)
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Step 1: specify u1 as an arbitrary vector satisfying >u1>2 =1;
Step 2: generate new Arnoldi vectors from the following recurrence equations:

bk+1uk+1 = rk =B−1Auk − s
k

i=1

hikui , k=1, . . . , (8)

hik = uT
i B−1Auk , i=1, . . . , k, bk+1 = >rk >2, (9a, b)

where hik makes uk+1 orthogonalized to ui (i=1, . . . , k).
Algorithm 1 is in a form suitable for obtaining the reciprocals of lower eigenvalues of

equation (7). If there is no breakdown in the reduction process, u1, . . . , uk+1 are a set of
orthogonalized bases in the Krylov subspace {u1, B−1Au1, . . . , (B−1A)ku1}. Theoretically,
this algorithm will halt. In this respect, the following theorems are relevant.

Theorem 1. Assume that the eigenvectors of problem (7) are complete. If u1 can be
expressed as a linear combination of the eigenvectors yi (i=1, . . . , m, mQ n) with respect
to different eigenvalues li (i=1, . . . , m), i.e.,

u1 = s
m

i=1

siyi , si $ 0, i=1, . . . , m,

li $ lj , i$ j,

the Arnoldi Algorithm 1 can be executed for only m steps, at which time rm must be zero.
Theorem 2. Assume that eigenvalue problem (7) is complete in eigenvectors, and that

m is the number of its non-equal eigenvalue (equal eigenvalues are counted as one). Then,
with any start vectors u1, the Arnoldi Algorithm 1 will break down before step (m+1).

The proofs of Theorems 1 and 2 are given in Appendix A.
Fortunately, Wilkinson [14] has pointed out that this type of breakdown can be

overcome by arbitrarily taking a unit vector uk+1$R2n×1 which is orthogonalized to the
previously generated Arnoldi vectors, and letting bk+1 =0: i.e., the Arnoldi process can
be continued after the breakdown, and the breakdown of the Arnoldi process means that
the Krylov subspace generated is an invariant subspace. In finite precision computation,
the breakdown rarely happens. Instead, the orthogonality is lost among the Arnoldi
vectors because of ‘‘cancellation’’ other than the rounding errors, as emphasized by
Wilkinson [14]. The orthogonality among the Arnoldi vectors can be restored by a
complete re-orthogonalization [14, 9]. Based on the floating point expression, an
explanation has been given on the mechanism of loss of the orthogonality and on why one
re-orthogonalization can restore the orthogonality [23]. In the time of Wilkinson, Arnoldi’s
method was used to reduce a matrix to its upper Hessenberg form, and the complete
re-orthogonalization made it less attractive in finite precision computation as compared
with Householder’s method. However, Householder’s method destroys the sparsity of the
original matrices in the reduction process. This destruction of sparsity prevents it from
being a practical method for large scale eigenvalue problems in engineering, whereas the
sparsity of system matrices can be fully exploited in Arnoldi’s process. In addition, the
property of the Krylov subspace makes it unnecessary to carry out Arnoldi’s process in
full scale in order that the required end eigenvalues converge. In view of the great success
of the Lanczos method in large scale symmetric eigenvalue problems, it is reasonable to
believe that Arnoldi’s method will become a successful method for large scale unsymmetric
eigenvalue problems. Usually, the number of Arnoldi vectors which need to be generated
to enable a few of the end eigenvalues converge is much less than the size of the original
matrix. Even if complete re-orthogonalization is enforced in the finite precision
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implementation of Arnoldi’s method, it remains an efficient method compared with
any methods that destroy the sparsity for a large scale problem. A selective re-
orthogonalization technique can also be developed as a parallel with the selective
re-orthogonalization technique for symmetric eigenvalue problems [10]. With selective re-
orthogonalization, the newly generated Lanczos vector is re-orthogonalized with respect
to the good Ritz vectors instead of the generated Lanczos vectors in order to keep the
orthogonality among the Lanczos vectors in finite precision computation. The
Daniel–Paige theory is the basis of the selective re-orthogonalization, which tells one that
the newly generated Lanczos vectors tend to have a non-trivial component in the direction
of any converged Ritz vectors in finite precision. The Ritz vectors are defined as
approximations of the eigenvectors of the original matrix based on the eigensolution of
the projected system on the generated Krylov subspace. Refer to reference [10] for the
definition of good Ritz vectors. There are other variations in the re-orthogonalizations [19].
In the authors’ experience, selective re-orthogonalization may not be necessarily less
expensive than complete re-orthogonalization due to the computation of the Ritz vectors,
but it gives information about the convergence of the Ritz vectors.

Theoretically, after 2n steps of the Arnoldi process, u2n+1 must be zero. In finite precision
computation, u2n+1 is zero within the round-off error of the finite precision if the
re-orthogonalization is enforced, giving

B−1AU=UH, (10)

where

h11 h12 · · · h1,2n

b2 h22 · · · h2,2n

U=[u1, . . . , u2n ], H=G
G

G

K

k
· · · · · · · · ·

G
G

G

L

l

. (11, 12)

b2n h2n,2n

U is an orthogonal matrix. Therefore, solving problem (1) can be performed by
determining the upper Hessenberg matrix H and its eigensolution. If the system is
constraint damped, the whole eigensolution of H is needed to determine the stability of
the system. However, for a system without constraint damping and in which B is definite,
there is no problem of stability. The size of the eigenvalue problem is usually very large
and it is unnecessarily expensive to find all the eigenvalues.

3. A REDUCTION METHOD FOR UNSYMMETRIC-DEFINITE PROBLEMS

In this section an Arnoldi algorithm suitable for damped modal analysis in structural
dynamics is discussed. Consider eigenvalue problem (1) without matrix D, which includes
problems (2)–(5). In the following, matrix B is assumed to be positive definite; the following
generalized Arnoldi process for the unsymmetric-definite problem may be used.

Algorithm 2: a generalized Arnoldi process for the unsymmetric-definite problem
Step 1: let u1 be an arbitrary vector satisfying >u1>=(uT

1Bu1)1/2 =1;
Step 2: new Arnoldi vectors are generated by

bk+1uk+1 = rk =B−1Auk − s
k

i=1

hikui , k=1, . . . , (13)

hik = uT
i Auk , i=1, . . . , k, bk+1 = (rT

kBrk )1/2, (14, 15)

where hik makes uk+1 B-orthogonal to ui : i.e., uT
k+1Bui =0, i=1, . . . , k.
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By keeping B-orthogonalities among Arnoldi vectors, the symmetric property of matrix
A can be retained in the projected upper Hessenberg matrix Hk : i.e., if matrix A is
symmetric, Hk is symmetric; if matrix A is skew-symmetric, Hk is also skew-symmetric; and
if matrix A is unsymmetric, Hk is also unsymmetric. Through the symmetry of matrix Hk ,
the reduction process can be simplified and the Arnoldi process can directly degenerate
to the Lanczos process for the symmetric problem. Furthermore, the quadratic form about
matrix B is the expression of system energy; hence normalizing the Arnoldi vectors with
the quadratic form about matrix B has also a physical background.

For any ke 2, one has

B−1AUk =UkHk + bk+1uk+1eT, (16)

h11 h12 · · · h1k

b2 h22 · · · h2k

UT
kAUk =Hk , Hk =G

G

G

K

k
· · · · · · · · ·

G
G

G

L

l

. (17, 18)

bk hkk

Obtain the complete eigensolution of the upper Hessenberg matrix Hk , i.e.,

HkSk =SkLk , (19)

where

Lk =diag [l1, . . . , lk ], Sk =[s1, . . . , sk ] (20a, b)

are, respectively, the eigenvalue matrix and its corresponding right eigenvector matrix. By
writing down equation (19), it is tacitly assumed that the eigenvectors of matrix Hk are
complete. From equations (16) and (19),

B−1A{Uksi}− li{Uksi}= bk+1skiuk+1, (21a)

>B−1A{Uksi}− li{Uksi}> = bk+1 =ski = >uk+1>. (21b)

This indicates that if bk+1 =ski = >uk+1> is small enough, denoted as

bk+1 =ski = >uk+1>Q o, (22)

{li , Uksi} will be an approximate eigenpair of B−1A. Therefore, an Arnoldi reduction
method for unsymmetric-definite eigenvalue problems can be summarized as follows.

Algorithm 3: a simple reduction eigenvalue method
Given a number k and a tolerance o for the converged eigenvectors,
Step 1: use Algorithm 2 to execute k steps of the Arnoldi process;
Step 2: formulate the projected upper Hessenberg matrix Hk and derive all its eigenpairs;
Step 3: use equation (22) to check the converged eigenvectors for the eigensolution of

the original eigenvalue problem;
Step 4: store the converged eigenpairs and stop.
There is no iterative property in Algorithm 3. It can only tell which eigenpairs have

converged to the given required precision in a single reduction. The key question is how
to make the simple reduction a reliable method for finding eigenvalues without missing
any required ones, which will be discussed in section 3.3.
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3.1.     -  

For undamped structural eigenvalue problems and undamped gyroscopic eigenvalue
problems, matrix A is skew-symmetric. For these two cases, the corresponding eigenvalue
problem (7) is in skew-definite form. By equations (17) and (18), the upper Hessenberg
matrix Hk must be skew-symmetric and therefore has a very simple structure [23]:

0 −b2

b2 0 −b3

Hk =G
G

G

G

G

K

k

.
.
.

.
.
.

.
.
.

G
G

G

G

G

L

l

. (23)

bk−1 0 −bk

bk 0

By using equation (23), the reduction process can be simplified as follows.
Algorithm 4 [23]: an Arnoldi reduction process for undamped gyroscopic problems
Step 1: u1$R2n×1 be an arbitrary vector, satisfying >u1>=(uT

1Bu1)1/2 =1;
Step 2: new Arnoldi vectors are generated by

bk+1uk+1 = rk =B−1Auk − bk−1uk−1, bk+1 = (rT
kBrk )1/2, k=1, . . . . (24)

This algorithm is even simpler than the symmetric Lanczos method, and is similar to
Bauchau’s method [12] except that it is conducted entirely in the real domain. Although
the gyroscopic effects are present in the undamped gyroscopic system, the corresponding
eigenvalue problem behaves in the same way as that in the undamped structural system.
This is due to both systems being energy conserving. Of course, the eigenvalue problems
for undamped structural systems thus can be determined as a generalized symmetric
eigenvalue problem in the configuration space instead of in the state space.

3.2.    

Multiple eigenvalues may be present in the eigenvalue problems for engineering
structures which possess some types of geometric symmetry. In theoretical computation,
the multiple eigenvalues can be determined only one multiple by one multiple through the
breakdown of the continuation of the Lanczos process or the Arnoldi process. In finite
precision implementation of Lanczos’ process and Arnoldi’s process, breakdown very
rarely happens even if the system does have multiple eigenvalues. If no breakdown takes
place in the reduction process, the projected tri-diagonal matrix in the Lanczos process
and the upper Hessenberg matrix in the Arnoldi process will not be reduced. An unreduced
tri-diagonal or upper Hessenberg matrix cannot have multiple eigenvalues [24]. This
indicates that multiple eigenvalues must be determined as approximately equal eigenvalues
in practical computation by reduction methods. Attempts had been made to circumvent
this difficulty by adopting the block Lanczos methods or block Arnoldi method [15]; see
the summary of this problem in reference [24]. However, any eigenvalue problems, when
expressed in the computer through floating point expressions, are perturbed within
round-off error. In other words, the symmetry of the original problem cannot be precisely
retained by a finite precision arithmetic. No matter which numerical method is used, the
eigenvalue problems are subject to perturbation. The block Lanczos method or the block
Arnoldi method has advantages in parallel implementations and in using out-of-core
memory [25]. Generally, the reduction method can determine the multiple eigenvalues to
a precision which is much higher than that required in engineering.
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3.3.         

The eigensolution of a reduction matrix Hk can only indicate which eigenvalues have
converged to the required precision, but it cannot give any information about whether or
not all of the required eigenvalues have converged, especially when there are multiple
eigenvalues. This is why this method has a reputation for missing eigenvalues. Without
a reliable technique to check and determine missing eigenpairs, the method cannot be used
with confidence.

Parlett and Scott [10] used a restart technique in the reduction process as a criterion to
stop the computation in the Lanczos algorithm for symmetric eigenvalue problems. The
main idea of the restart technique is as follows. After a simple reduction process has been
conducted, check and store the converged eigenpairs, then select a start vector or construct
a start vector from the unconverged Ritz vectors. The start vector and the new generated
Lanczos vector are orthogonalized with respect to the converged eigenvectors. In other
words, the Krylov subspaces in the restart process are generated in the complementary
invariant subspace of the invariant subspace spanned by the converged eigenvectors in the
previous reduction processes. The Krylov subspaces can also be regarded as generated by
the normal reduction process, with a matrix which is equal to the original matrix except
that the converged eigenvalues are set to zero in the spectrum of the original matrix. As
pointed out in reference [10], the inner eigenvalues may converge first before and
eigenvalues in very specially constructed cases in the reduction process. In the restart
process, the converged eigenvalues are removed from the end of the spectrum, and the
inner eigenvalues within the vicinity of the end eigenvalues become essential end
eigenvalues. Those eigenvalues will be the eigenvalues to converge in the restart process
according to the Lanczos phenomenon. When a number (Nf ) of eigenvalues or all the
eigenvalues under a given threshold are required, then, if the number of all converged
eigenvalues in the previous reduction is larger than Nf , and all the converged eigenvalues
in the current restart process are not in the convex of the first m converged eigenvalues,
or if all the converged eigenvalues in the current restart are not below the threshold, the
whole solution procedure can be stopped; otherwise, a new restart process is required.
Through this analysis, one can conclude that the reliability of the restart technique being
used as a technique to check and to determine the missed eigenvalues is of the same
reliability as the Lanczos method being used to determine the end eigenvalues.

A similar restart technique can also be used with Arnoldi’s method for unsymmetric
eigenvalue problems. The difference is that the bi-orthogonality of the right and left
eigenvectors requires that the new generated Arnoldi vectors need to be orthogonalized
with respect to the left eigenvectors corresponding to the converged eigenvalues. However,
an unsymmetric eigenvalue problem may present complex eigenpairs. If the new generated
Arnoldi vectors are directly orthogonalized with respect to complex eigenvectors, complex
computation is inevitable. Of course, the complex computation can be avoided by
separating the new generated Arnoldi vectors into the real and imaginary part
corresponding to the complex eigenpairs. However, the parallel determination of the left
and right eigenvalue problem has to be carried out simultaneously. Furthermore, difficulty
may also arise in determining the eigenpairs for unsymmetric eigenvalue problems which
have defective eigenvalues, and usually the defects of an unsymmetric eigenvalue problem
are not known in advance. Therefore, one needs a unified method which is applicable to
both defective and non-defective eigenvalue problems in the same way, and at best no
complex computation is needed. Instead of using the left and right eigenvectors, the
dynamic orthogonal decoupling technique [26, 27] has been adopted, and a restart
technique for the unsymmetric eigenvalue problems without generating the left Krylov
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subspace and computing the left eigenvectors has been given in reference [28]. The method
in reference [28] has the virtue of being suitable for both the defective and non-defective
eigenvalue problems, and complex computation has been completely avoided. The method
in reference [28] is similar to the deflated iterative Arnoldi method [21] and also implies
a new development in the Arnoldi reduction. When a number (Nf ) of the lower eigenvalues
or all the eigenvalues below a threshold frequency are required, a restart Arnoldi reduction
eigenvalue method generally takes the following shape.

Algorithm 5: a restart reduction eigenvalue method
Set r=0.
Step 1: carry out a simple reduction process by Algorithm 3, and store the orthogonal

bases of the invariant subspace spanned by converged eigenpairs in the current reduction;
Step 2: randomly generate a start vector or construct a start vector as the linear

combination of the unconverged Ritz vectors in the last reduction, and the start vector
is normalized and orthogonalized to the converged invariant subspace, then carry out the
rth restart reduction process by Algorithm 3, except that all the new generated vectors
which are orthogonalized to the converged invariant subspace;

Step 3: if the number of the converged eigenvalues is still less than Nf or one of the
converged eigenvalues in current reductions is still below the threshold frequency, go to
Step 4; otherwise, (1) in the case that a specified number of eigenvalues is required: if none
of the converged eigenvalues in the current reduction has the frequency which is below
the highest frequency of the first Nf converged eigenvalues, the Nf converged eigenvalues
and the corresponding eigenvectors are accepted as the required eigenpairs, then, go to
Step 6, or else go to Step 4; (2) in the case that all the eigenvalues below a threshold
frequency are required; if none of the converged eigenvalues in the current reduction has
a frequency below the threshold frequency, the converged eigenvalues and the
corresponding eigenvectors are the required eigensolution of the original damped
eigenvalue problem, then, go to Step 6, otherwise go to Step 4;

Step 4: update the orthogonal bases of the invariant subspace spanned by the converged
eigenvectors with the converged eigenvectors in the rth restart process;

Step 5: set r= r+1 and go to Step 2;
Step 6: store the converged eigenvalues and the corresponding orthogonal bases of the

invariant spaces. Stop.
Algorithm 5 can also be made safer in practical implementation. For example, in the

case that Nf lower eigenvalues are required, the stop criterion can be modified as follows:
the restart process is stopped if all the converged eigenvalues in the current reduction have
a good clearance to the converged Nf eigenvalues. This modification is favorable when the
last of the required Nf eigenvalues are multiple eigenvalues.

4. NUMERICAL IMPLEMENTATION AND EXAMPLES

4.1.         

The system matrix enters the algorithm only in the form of the following matrix–vector
product:

B−1Auk =$K−1

M−1%$−(G+C)
M

−M
0 %6qk

pk7, (25)

or



(a)

(b)
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B−1Auk=6−(LkLT
k )−1[(Gqk +Cqk )+Mpk ]

qk 7. (26)

It can be determined with the sparsity of matrix M, G, C and K fully retained. The sparsity
of K can also be fully retained in Lk by Cholesky decomposition with the one-dimensional
variable bandwidth storing technique.

4.2.  

4.2.1. A double tower structure
A double tower structure illustrated in Figure 1(a) was analyzed with each beam member

of unit length. The material and cross-sectional properties were E=2·1×1011, n=0·3,
Jy = Jz =8·33×10−6, a=1·0×10−2 and rl =9·8×101. Two layers of the foundation
were damped as shown in Figure 1(b). The damping coefficient for each damper is
c=1·0×102. The computed results are shown in Tables 1–3. All the results were
computed on an IBM PC 80486DX2-66 compatible. 45 Arnoldi vectors were generated
for each reduction. The precision of the converged eigenpairs was taken to be
o=1·0×10−10, with reference to equation (22). The simultaneous iteration method [29]
was also applied to this problem: the same results are obtained for all the three cases.

Figure 1. (a) A double tower structure. (b) Damping from a two-layer foundation.
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T 1

Undamped eigenvalues

2i23·1893 2i23·6953 2i23·77252 i26·6934 2i32·5076 2i33·7160

T 2

Proportional damping: C=10×M

−5·000002 i22·6439 −5·000002 i23·1618 −5·000002 i23·2407
−5·000002 i26·2209 −5·000002 i32·1207 −5·000002 i33·3432

T 3

Concentratedly damped eigenvalues

−0·159980×10−2 2 i23·1893 −0·384710×10−3 2 i23·6953 −0·193554×10−2 2 i23·7725
−0·221652×10−6 2 i26·6934 −0·188746×10−2 2 i32·5076 −0·274793×10−3 2 i33·7160

Because there are no multiple eigenvalues in this example and the lower eigenvalues are
also well separated, there are no missing eigenvalues among the converged ones; thus no
restart was applied.

The computing times for the three cases were 6 minutes and 37 seconds, 6 minutes and
40 seconds, and 6 minutes and 35 seconds, respectively.

4.2.2. A helicopter rotary wing system model
An analysis was carried out for the helicopter rotary wing model illustrated in Figure 2.

The material and cross-sectional parameters of blades were E=2·1×1011, n=0·3,
a=2·231×10−5, rl =1·13×10−1, Jy =1·167×10−11 and Jz =1·167×10−8. The blade
length was lb =0·508, E=2·1×1011, n=0·3, a=2·231×10−5, rl =1·13×10−1 and
Jy = Jz =1·167×10−8, the shaft length was ls =0·2, and the distance from the damper to

Figure 2. (a) A model of a helicopter rotary wing system. (b) Damper links.
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T 4

(a) the undamped gyroscopic eigenvalues

2i80·0583 2i80·0619 2i80·3409 2i80·3691 2i80·3691 2i80·3691
2i493·713 2i493·795 2i494·591 2i494·746 2i494·746 2i494·746
2i541·727 2i1217·57 2i1225·32 2i1229·27 2i1230·09 2i1230·09
2i1230·09 2i1320·32

(b) computing times for the undamped gyroscopic example

Solution number Size of reduced system Number of restarts Computer time

1 80 3 2 minutes 17 seconds
2 396 (full reduction) 0 8 minutes 9 seconds

the blade root was lc =0·101. The damping coefficient for each damper was c=1·0×101.
The rotational speed was V=126·6. For current computation, a 198-DOF finite element
model was used. The first 20 pairs of eigenvalues were computed for the undamped and
damped cases by the proposed restart reduction method in Algorithm 5.

For the undamped case, the simplification in section 3.1 was incorporated into the
algorithm. The required precision for the eigenpairs was set to o=1·0×10−15 and 80
Arnoldi vectors were generated in each reduction. The stop condition was satisfied after
three restarts. In order to verify the results, a full reduction was also carried out in the
undamped case. Both solutions give the same result for the required 20 eigenpairs; see
Table 4(a). The comparison of the two solution processes is shown in Table 4(b).

To obtain the first 20 pairs of eigenvalues for the damped gyroscopic eigenvalue
problem, 60, 80 and 396 vector reductions were used. The convergence precision for the
eigenpairs was set to be o=1·0×10−15. All three solutions gave the same results for the
first 20 pairs of eigenvalues; see Table 5(a)—396 vectors were in a full reduction. For the
full reduction, the projected upper Hessenberg H2n is orthogonally similar to B−1A; hence
no restart is needed and the solution is equivalent to the application of the QR method
directly to B−1A. The computer times and other details for the three solution processes
are shown in Table 5(b).

From Table 5(b) it can be seen that the reduction eigenvalue method has a great
advantage in computing time compared with an eigenvalue method which finds the full
solution. The computer times for the two full solutions for the undamped and damped
case have a very large difference. This is due to the computation cost being very low with
the simplified algorithm, both in the reduction process and in the eigensolution of the

T 5

(a) damped gyroscopic eigenvalues

−2·530702 i80·1299 −2·530312 i80·1335 −2·495062 i80·4116 −2·488402 i80·4393
−2·488402 i80·4393 −2·488402 i80·4393 −32·88002 i497·398 −32·84552 i497·479
−32·50342 i498·235 −32·39512 i498·365 −32·39512 i498·365 −32·39512 i498·365
−9·487492 i541·657 −128·8302 i1227·05 −133·1922 i1231·50 −132·5832 i1235·91
−132·0672 i1236·76 −132·0672 i1236·76 −132·0672 i1236·76 −29·83582 i1317·02

(b) computer times for the damped gyroscopic examples

Solution number Size of reduced system Number of restarts Computer times

1 60 3 4 minutes 2 seconds
2 80 3 4 minutes 40 seconds
3 396 (full reduction) 0 138 minutes
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projected tri-diagonal matrix. From the theoretical results in reference [23], each root fixed
eigenvalue of the single blade is a three-multiple eigenvalue of the rotary wing system with
six blades. It can be seen from Tables 4(a) and 5(a) that the multiple eigenvalues were safely
computed. There are new theoretical development and implementation details on the
Arnoldi reduction and restart technique for the unsymmetric-definite problem in structural
dynamics in reference [28].

5. CONCLUSIONS

Arnoldi’s method has been generalized to solve large scale unsymmetric eigenvalue
problems in structural dynamics. Advantages of Arnoldi’s method which are retained in
the proposed method are: (a) reduction process is performed entirely in real arithmetic;
(b) no serious breakdown takes place in the reduction process irrespective of which system
it is applied to; and (c) the left Krylov subspace or the left eigenvectors do not need to
be computed, hence providing economy in computation. By enforcing the special
orthogonality among the generalized Arnoldi vectors for the unsymmetric-definite
problem, the symmetry of the system matrices can be retained in the projected upper
Hessenberg matrix. By taking advantage of the retention of symmetry, a very simple
reduction algorithm was obtained for undamped gyroscopic eigenvalue problems. This
simple algorithm has a computation cost similar to that of Bauchau’s gyroscopic Lanczos
method, but has the advantage that the whole process is conducted entirely in the real
domain. Since no guarantee is offered as to whether or not eigenpairs have been missed
by a simple reduction method, the restart technique becomes an efficient way of checking
and determining those possible missing eigenpairs. The reliability of the restart technique
being used as a technique to check and determine the missed eigenvalues is the same as
that of the Lanczos method being used to determine the end eigenvalues. Without such
a missing eigenvalue check, a reduction method will not be safe in application to
engineering problems. The numerical examples presented have demonstrated the potential
of the proposed reduction method for large scale unsymmetric eigenvalue problems in
structural dynamics.
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APPENDIX A

Lemma 1. For P $Rn× n, {q1, . . . , qj} are the Arnoldi vectors obtained by performing
the following recurrence scheme on matrix P:

bi+1qi+1 = ri =Pqi − s
i

k=1

hkiqk , i=1, . . . , j−1. (A1)
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Here >q1>=1, hki = qT
kPqi and bi+1 = >ri >. If there is no breakdown until step j, Arnoldi

vectors {q1, . . . , qj} are a set of orthogonal bases for the Krylov subspace
span {q1, Pq1, P2q1, . . . , Pj−1qj}: i.e.,

span {q1, q2, . . . , qj}=span {q1, Pq1, . . . , Pj−1q1}. (A2)

Proof. The conclusion is obviously correct for j=1. Assume that the conclusion holds
for j= i: i.e.,

span {q1, q2, . . . , qi}=span {q1, Pq1, . . . , Pi−1q1}. (A3)

From equation (A3), qi can be expressed as

qi = s
i

k=1

(Pk−1q1)ak , (A4)

and at least one of ak (k=1, . . . , i) is not equal to zero, so that

Pqi = s
i

k=1

(Pkq1)ak $ span {q1, Pq1, . . . , Piq1}. (A5)

Also, from equation (A3),

s
i

k=1

hkiqk ${q1, . . . , qi}$ span {q1, Pq1, . . . , Pi−1q1}. (A6)

From the assumed condition in the lemma, bi+1 $ 0, and combining equations (A1), (A3)
and (A4) yields

qi+1 =
1

bi+1 0Pqi − s
i

k=1

hkiqk1$ span {q1, Pq1, . . . , Aiq1}. (A7)

From equation (A3), one has

Pi−1q1 = s
i

k=1

gkqk . (A8)

Pre-multiply equation (A8) with P to obtain

Piq1 = s
i

k=1

gkPqk , (A9)

and recall the recurrence formulation (A1), to yield

Piq1 = s
i

k=1

gk 0bk+1qk+1 + s
k

s=1

hskqs1$ span {q1, q2, . . . , qi+1}. (A10)

Hence, by equations (A7) and (A10), the assumption is valid.
Proof of Theorem 1 [21]. From the assumption,

Pmq1 = s
k

i=1

siPmyi = s
k

i=1

sil
m
i yi , m=1, . . . , j−1,
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where P=B−1A. Hence

{q1, Pq1, . . . , Pj−1q1}=[y1 · · · yk ]& s1

· · ·
sk

l1s1

· · ·
lksk

· · ·
· · ·
· · ·

lj−1
1 s1

· · ·
lj−1

k sk'=[y1 · · · yk ]V,

(A11)

rank (q1 Pq1 · · · Pj−1q1)= rank ([y1 · · · yk ]V )=6 j,
k,

jE k
jq k7. (A12)

From equation (A12), when jQ k, {q1, Pq1, . . . , Pj−1q1} is linearly independent; if jq k,
then {q1, Pq1, . . . , Pj−1q1} is linearly dependent. For j= k+1,

Pkq1$ span {q1, Pq1, . . . , Pk−1q1}=span {q1, q2, . . . , qk}.

If qk+1 $ 0 is the recurrence scheme obtained, from Lemma 1,

span {q1, q2, . . . , qj}=span {q1, Pq1, . . . , Pj−1q1}. (A13)

From equation (A12), the dimensions of the two subspaces on the left and right sides of
equation (A13) are k and k+1, respectively. This is impossible. Hence the conclusion
holds.

Theorem 2 is a direct application of Theorem 1.

APPENDIX B: NOMENCLATURE

A, B matrices in state space
C damping matrix, semi-positive definite
D circulatory matrix or constraint damping

matrix, skew-symmetric
E Young’s modulus of elasticity
G gyroscopic matrix, skew-symmetric
Hk projected upper Hessenberg matrix in

Arnoldi reduction process
Jy , Jz moments of beam cross-sectional area
K stiffness matrix, symmetric
Lk Cholesky triangle matrix in Cholesky

factorization of matrix K=LkLT
k

M mass matrix, positive definite

Nf required number of eigenvalues
ui ith Arnoldi vector
Uk ={u1, . . . , uk}, Arnoldi vector matrix
a cross-sectional area
n order of matrices M, G, C, K and D
r restart number
si ith eigenvector of matrix Hk

ski kth element of si

x displacement vector
o tolerance given for determining

convergence of eigenpairs
n Poisson ratio
rl mass density per unit length


